Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2320713121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621119

RESUMO

As the SARS-CoV-2 virus continues to spread and mutate, it remains important to focus not only on preventing spread through vaccination but also on treating infection with direct-acting antivirals (DAA). The approval of Paxlovid, a SARS-CoV-2 main protease (Mpro) DAA, has been significant for treatment of patients. A limitation of this DAA, however, is that the antiviral component, nirmatrelvir, is rapidly metabolized and requires inclusion of a CYP450 3A4 metabolic inhibitor, ritonavir, to boost levels of the active drug. Serious drug-drug interactions can occur with Paxlovid for patients who are also taking other medications metabolized by CYP4503A4, particularly transplant or otherwise immunocompromised patients who are most at risk for SARS-CoV-2 infection and the development of severe symptoms. Developing an alternative antiviral with improved pharmacological properties is critical for treatment of these patients. By using a computational and structure-guided approach, we were able to optimize a 100 to 250 µM screening hit to a potent nanomolar inhibitor and lead compound, Mpro61. In this study, we further evaluate Mpro61 as a lead compound, starting with examination of its mode of binding to SARS-CoV-2 Mpro. In vitro pharmacological profiling established a lack of off-target effects, particularly CYP450 3A4 inhibition, as well as potential for synergy with the currently approved alternate antiviral, molnupiravir. Development and subsequent testing of a capsule formulation for oral dosing of Mpro61 in B6-K18-hACE2 mice demonstrated favorable pharmacological properties, efficacy, and synergy with molnupiravir, and complete recovery from subsequent challenge by SARS-CoV-2, establishing Mpro61 as a promising potential preclinical candidate.


Assuntos
Antivirais , Citidina/análogos & derivados , Hepatite C Crônica , Hidroxilaminas , Lactamas , Leucina , Nitrilas , Prolina , Ritonavir , Humanos , Animais , Camundongos , Antivirais/farmacologia , Protocolos Clínicos , Combinação de Medicamentos
2.
Sci Adv ; 10(9): eadn0042, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427738

RESUMO

People living with human immunodeficiency virus (HIV) receiving integrase strand transfer inhibitors (INSTIs) have been reported to experience virological failure in the absence of resistance mutations in integrase. To elucidate INSTI resistance mechanisms, we propagated HIV-1 in the presence of escalating concentrations of the INSTI dolutegravir. HIV-1 became resistant to dolutegravir by sequentially acquiring mutations in the envelope glycoprotein (Env) and the nucleocapsid protein. The selected Env mutations enhance the ability of the virus to spread via cell-cell transfer, thereby increasing the multiplicity of infection (MOI). While the selected Env mutations confer broad resistance to multiple classes of antiretrovirals, the fold resistance is ~2 logs higher for INSTIs than for other classes of drugs. We demonstrate that INSTIs are more readily overwhelmed by high MOI than other classes of antiretrovirals. Our findings advance the understanding of how HIV-1 can evolve resistance to antiretrovirals, including the potent INSTIs, in the absence of drug-target gene mutations.


Assuntos
Inibidores de Integrase de HIV , Integrase de HIV , HIV-1 , Humanos , Raltegravir Potássico/farmacologia , Inibidores de Integrase de HIV/farmacologia , HIV-1/genética , HIV-1/metabolismo , Integrase de HIV/genética , Integrase de HIV/metabolismo , Mutação
3.
iScience ; 27(3): 109049, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361624

RESUMO

Direct acting antivirals (DAAs) represent critical tools for combating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that have escaped vaccine-elicited spike-based immunity and future coronaviruses with pandemic potential. Here, we used bioluminescence imaging to evaluate therapeutic efficacy of DAAs that target SARS-CoV-2 RNA-dependent RNA polymerase (favipiravir, molnupiravir) or main protease (nirmatrelvir) against Delta or Omicron VOCs in K18-hACE2 mice. Nirmatrelvir displayed the best efficacy followed by molnupiravir and favipiravir in suppressing viral loads in the lung. Unlike neutralizing antibody treatment, DAA monotherapy regimens did not eradicate SARS-CoV-2 in mice, but combining molnupiravir with nirmatrelvir exhibited superior additive efficacy and led to virus clearance. Furthermore, combining molnupiravir with caspase-1/4 inhibitor mitigated inflammation and lung pathology whereas combining molnupiravir with COVID-19 convalescent plasma demonstrated synergy, rapid virus clearance, and 100% survival. Thus, our study provides insights into in vivo treatment efficacies of DAAs and other effective combinations to bolster COVID-19 therapeutic arsenal.

4.
Cell Chem Biol ; 31(3): 487-501.e7, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38232732

RESUMO

Structural dynamics of human immunodeficiency virus 1 (HIV-1) envelope (Env) glycoprotein mediate cell entry and facilitate immune evasion. Single-molecule FRET using peptides for Env labeling revealed structural dynamics of Env, but peptide use risks potential effects on structural integrity/dynamics. While incorporating noncanonical amino acids (ncAAs) into Env by amber stop-codon suppression, followed by click chemistry, offers a minimally invasive approach, this has proved to be technically challenging for HIV-1. Here, we develope an intact amber-free HIV-1 system that overcomes hurdles of preexisting viral amber codons. We achieved dual-ncAA incorporation into Env on amber-free virions, enabling single-molecule Förster resonance energy transfer (smFRET) studies of click-labeled Env that validated the previous peptide-based labeling approaches by confirming the intrinsic propensity of Env to dynamically sample multiple conformational states. Amber-free click-labeled Env also enabled real-time tracking of single virion internalization and trafficking in cells. Our system thus permits in-virus bioorthogonal labeling of proteins, compatible with studies of virus entry, trafficking, and egress from cells.


Assuntos
HIV-1 , Provírus , Humanos , Imagem Individual de Molécula , Proteínas/metabolismo , Peptídeos/metabolismo
5.
J Infect Dis ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38035854

RESUMO

BACKGROUND: Chronic inflammation persists in some people living with HIV (PLWH) during antiretroviral therapy and is associated with premature aging. The gp120 subunit of HIV-1 envelope sheds and can be detected in plasma, showing immunomodulatory properties even in the absence of detectable viremia. We evaluated whether plasmatic soluble gp120 (sgp120) and a family of gp120-specific anti-cluster A antibodies, linked to CD4 depletion in vitro, contribute to chronic inflammation, immune dysfunction, and sub-clinical cardiovascular disease in participants of the Canadian HIV and Aging cohort (CHACS) with undetectable viremia. METHODS: Cross-sectional assessment of sgp120 and anti-cluster A antibodies was performed in 386 individuals from CHACS. Their association with pro-inflammatory cytokines and subclinical coronary artery disease was assessed using linear regression models. RESULTS: High levels of sgp120 and anti-cluster A antibodies inversely correlated with CD4 count and CD4:CD8 ratio. The presence of sgp120 was associated with increased levels of IL-6. In participants with detectable atherosclerotic plaque and detectable sgp120, anti-cluster A antibodies and their combination with sgp120 levels correlated positively with the total volume of atherosclerotic plaques. CONCLUSIONS: sgp120 may act as a pan toxin causing immune dysfunction and sustained inflammation in a subset of PLWH, contributing to the development of premature comorbidities.

6.
Nature ; 623(7989): 1026-1033, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37993716

RESUMO

Human immunodeficiency virus 1 (HIV-1) infection is initiated by binding of the viral envelope glycoprotein (Env) to the cell-surface receptor CD41-4. Although high-resolution structures of Env in a complex with the soluble domains of CD4 have been determined, the binding process is less understood in native membranes5-13. Here we used cryo-electron tomography to monitor Env-CD4 interactions at the membrane-membrane interfaces formed between HIV-1 and CD4-presenting virus-like particles. Env-CD4 complexes organized into clusters and rings, bringing the opposing membranes closer together. Env-CD4 clustering was dependent on capsid maturation. Subtomogram averaging and classification revealed that Env bound to one, two and finally three CD4 molecules, after which Env adopted an open state. Our data indicate that asymmetric HIV-1 Env trimers bound to one and two CD4 molecules are detectable intermediates during virus binding to host cell membranes, which probably has consequences for antibody-mediated immune responses and vaccine immunogen design.


Assuntos
Antígenos CD4 , Membrana Celular , Proteína gp120 do Envelope de HIV , HIV-1 , Multimerização Proteica , Humanos , Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Capsídeo/química , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Antígenos CD4/química , Antígenos CD4/metabolismo , Antígenos CD4/ultraestrutura , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp120 do Envelope de HIV/ultraestrutura , Infecções por HIV/virologia , HIV-1/química , HIV-1/ultraestrutura , Vírion/química , Vírion/metabolismo , Vírion/ultraestrutura
7.
Vaccines (Basel) ; 11(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37896949

RESUMO

The vaccination campaign against SARS-CoV-2 relies on the world-wide availability of effective vaccines, with a potential need of 20 billion vaccine doses to fully vaccinate the world population. To reach this goal, the manufacturing and logistic processes should be affordable to all countries, irrespective of economical and climatic conditions. Outer membrane vesicles (OMVs) are bacterial-derived vesicles that can be engineered to incorporate heterologous antigens. Given the inherent adjuvanticity, such modified OMVs can be used as vaccines to induce potent immune responses against the associated proteins. Here, we show that OMVs engineered to incorporate peptides derived from the receptor binding motif (RBM) of the spike protein from SARS-CoV-2 elicit an effective immune response in vaccinated mice, resulting in the production of neutralizing antibodies (nAbs) with a titre higher than 1:300. The immunity induced by the vaccine is sufficient to protect the animals from intranasal challenge with SARS-CoV-2, preventing both virus replication in the lungs and the pathology associated with virus infection. Furthermore, we show that OMVs can be effectively decorated with the RBM of the Omicron BA.1 variant and that such engineered OMVs induce nAbs against Omicron BA.1 and BA.5, as measured using the pseudovirus neutralization infectivity assay. Importantly, we show that the RBM438-509 ancestral-OMVs elicited antibodies which efficiently neutralize in vitro both the homologous ancestral strain, the Omicron BA.1 and BA.5 variants with a neutralization titre ranging from 1:100 to 1:1500, suggesting its potential use as a vaccine targeting diverse SARS-CoV-2 variants. Altogether, given the convenience associated with the ease of engineering, production and distribution, our results demonstrate that OMV-based SARS-CoV-2 vaccines can be a crucial addition to the vaccines currently available.

8.
medRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645879

RESUMO

Background: Chronic inflammation persists in some people living with HIV (PLWH), even during antiretroviral therapy (ART) and is associated with premature aging. The gp120 subunit of the HIV-1 envelope glycoprotein can shed from viral and cellular membranes and can be detected in plasma and tissues, showing immunomodulatory properties even in the absence of detectable viremia. We evaluated whether plasmatic soluble gp120 (sgp120) and a family of gp120-specific anti-cluster A antibodies, which were previously linked to CD4 depletion in vitro , could contribute to chronic inflammation, immune dysfunction, and sub-clinical cardiovascular disease in participants of the Canadian HIV and Aging cohort (CHACS) with undetectable viremia. Methods: Cross-sectional assessment of plasmatic sgp120 and anti-cluster A antibodies was performed in 386 individuals from CHACS. Their association with pro-inflammatory cytokines, as well as subclinical coronary artery disease measured by computed tomography coronary angiography was assessed using linear regression models. Results: In individuals with high levels of sgp120, anti-cluster A antibodies inversely correlated with CD4 count (p=0.042) and CD4:CD8 ratio (p=0.004). The presence of sgp120 was associated with increased plasma levels of IL-6. In participants with detectable atherosclerotic plaque and detectable sgp120, sgp120 levels, anti-cluster A antibodies and their combination correlated positively with the total volume of atherosclerotic plaques (p=0.01, 0.018 and 0.006, respectively). Conclusion: Soluble gp120 may act as a pan toxin causing immune dysfunction and sustained inflammation in a subset of PLWH, contributing to the development of premature comorbidities. Whether drugs targeting sgp120 could mitigate HIV-associated comorbidities in PLWH with suppressed viremia warrants further studies. Key points: Soluble gp120 is detected in the plasma of people living with HIV-1 with undetectable viremia. The presence of soluble gp120 and anti-cluster A antibodies is associated with immune dysfunction, chronic inflammation, and sub-clinical cardiovascular disease.

9.
bioRxiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398307

RESUMO

Direct acting antivirals (DAAs) represent critical tools for combating SARS-CoV-2 variants of concern (VOCs) that evolve to escape spike-based immunity and future coronaviruses with pandemic potential. Here, we used bioluminescence imaging to evaluate therapeutic efficacy of DAAs that target SARS-CoV-2 RNA-dependent RNA polymerase (favipiravir, molnupiravir) or Main protease (nirmatrelvir) against Delta or Omicron VOCs in K18-hACE2 mice. Nirmatrelvir displayed the best efficacy followed by molnupiravir and favipiravir in suppressing viral loads in the lung. Unlike neutralizing antibody treatment, DAA monotherapy did not eliminate SARS-CoV-2 in mice. However, targeting two viral enzymes by combining molnupiravir with nirmatrelvir resulted in superior efficacy and virus clearance. Furthermore, combining molnupiravir with Caspase-1/4 inhibitor mitigated inflammation and lung pathology whereas combining molnupiravir with COVID-19 convalescent plasma yielded rapid virus clearance and 100% survival. Thus, our study provides insights into treatment efficacies of DAAs and other effective combinations to bolster COVID-19 therapeutic arsenal.

10.
Nature ; 619(7971): 819-827, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438530

RESUMO

Understanding protective immunity to COVID-19 facilitates preparedness for future pandemics and combats new SARS-CoV-2 variants emerging in the human population. Neutralizing antibodies have been widely studied; however, on the basis of large-scale exome sequencing of protected versus severely ill patients with COVID-19, local cell-autonomous defence is also crucial1-4. Here we identify phospholipid scramblase 1 (PLSCR1) as a potent cell-autonomous restriction factor against live SARS-CoV-2 infection in parallel genome-wide CRISPR-Cas9 screens of human lung epithelia and hepatocytes before and after stimulation with interferon-γ (IFNγ). IFNγ-induced PLSCR1 not only restricted SARS-CoV-2 USA-WA1/2020, but was also effective against the Delta B.1.617.2 and Omicron BA.1 lineages. Its robust activity extended to other highly pathogenic coronaviruses, was functionally conserved in bats and mice, and interfered with the uptake of SARS-CoV-2 in both the endocytic and the TMPRSS2-dependent fusion routes. Whole-cell 4Pi single-molecule switching nanoscopy together with bipartite nano-reporter assays found that PLSCR1 directly targeted SARS-CoV-2-containing vesicles to prevent spike-mediated fusion and viral escape. A PLSCR1 C-terminal ß-barrel domain-but not lipid scramblase activity-was essential for this fusogenic blockade. Our mechanistic studies, together with reports that COVID-associated PLSCR1 mutations are found in some susceptible people3,4, identify an anti-coronavirus protein that interferes at a late entry step before viral RNA is released into the host-cell cytosol.


Assuntos
COVID-19 , Proteínas de Transferência de Fosfolipídeos , SARS-CoV-2 , Animais , Humanos , Camundongos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Quirópteros , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/prevenção & controle , COVID-19/virologia , Sequenciamento do Exoma , Hepatócitos/imunologia , Hepatócitos/metabolismo , Interferon gama/imunologia , Pulmão/imunologia , Pulmão/metabolismo , Fusão de Membrana , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/imunologia , Proteínas de Transferência de Fosfolipídeos/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Internalização do Vírus
11.
Nat Commun ; 14(1): 4368, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474505

RESUMO

The host proteins SERINC3 and SERINC5 are HIV-1 restriction factors that reduce infectivity when incorporated into the viral envelope. The HIV-1 accessory protein Nef abrogates incorporation of SERINCs via binding to intracellular loop 4 (ICL4). Here, we determine cryoEM maps of full-length human SERINC3 and an ICL4 deletion construct, which reveal that hSERINC3 is comprised of two α-helical bundles connected by a ~ 40-residue, highly tilted, "crossmember" helix. The design resembles non-ATP-dependent lipid transporters. Consistently, purified hSERINCs reconstituted into proteoliposomes induce flipping of phosphatidylserine (PS), phosphatidylethanolamine and phosphatidylcholine. Furthermore, SERINC3, SERINC5 and the scramblase TMEM16F expose PS on the surface of HIV-1 and reduce infectivity, with similar results in MLV. SERINC effects in HIV-1 and MLV are counteracted by Nef and GlycoGag, respectively. Our results demonstrate that SERINCs are membrane transporters that flip lipids, resulting in a loss of membrane asymmetry that is strongly correlated with changes in Env conformation and loss of infectivity.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Proteínas de Membrana/metabolismo , HIV-1/metabolismo , Fatores de Restrição Antivirais , Glicoproteínas de Membrana , Antivirais
12.
Res Sq ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37292970

RESUMO

The vaccination campaign against SARS-CoV-2 relies on the world-wide availability of effective vaccines, with a potential need of 20 billion vaccine doses to fully vaccinate the world population. To reach this goal, the manufacturing and logistic processes should be affordable to all countries, irrespectively of economical and climatic conditions. Outer membrane vesicles (OMV) are bacterial-derived vesicles that can be engineered to incorporate heterologous antigens. Given the inherent adjuvanticity, such modified OMV can be used as vaccine to induce potent immune responses against the associated protein. Here we show that OMVs engineered to incorporate peptides derived from the receptor binding motif (RBM) of the spike protein from SARS-CoV-2 elicit an effective immune response in vaccinated mice, resulting in the production of neutralizing antibodies (nAbs). The immunity induced by the vaccine is sufficient to protect the animals from intranasal challenge with SARS-CoV-2, preventing both virus replication in the lungs and the pathology associated with virus infection. Furthermore, we show that OMVs can be effectively decorated with the RBM of the Omicron BA.1 variant and that such engineered OMVs induced nAbs against Omicron BA.1 and BA.5, as judged by pseudovirus infectivity assay. Importantly, we show that the RBM438-509 ancestral-OMVs elicited antibodies which efficiently neutralized in vitro both the homologous ancestral strain, the Omicron BA.1 and BA.5 variants, suggesting its potential use as a pan SARS-CoV-2 vaccine. Altogether, given the convenience associated with ease of engineering, production and distribution, our results demonstrate that OMV-based SARS-CoV-2 vaccines can be a crucial addition to the vaccines currently available.

13.
Vaccines (Basel) ; 11(5)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37243110

RESUMO

The COVID-19 pandemic has underscored the importance of swift responses and the necessity of dependable technologies for vaccine development. Our team previously developed a fast cloning system for the modified vaccinia virus Ankara (MVA) vaccine platform. In this study, we reported on the construction and preclinical testing of a recombinant MVA vaccine obtained using this system. We obtained recombinant MVA expressing the unmodified full-length SARS-CoV-2 spike (S) protein containing the D614G amino-acid substitution (MVA-Sdg) and a version expressing a modified S protein containing amino-acid substitutions designed to stabilize the protein a in a pre-fusion conformation (MVA-Spf). S protein expressed by MVA-Sdg was found to be expressed and was correctly processed and transported to the cell surface, where it efficiently produced cell-cell fusion. Version Spf, however, was not proteolytically processed, and despite being transported to the plasma membrane, it failed to induce cell-cell fusion. We assessed both vaccine candidates in prime-boost regimens in the susceptible transgenic K18-human angiotensin-converting enzyme 2 (K18-hACE2) in mice and in golden Syrian hamsters. Robust immunity and protection from disease was induced with either vaccine in both animal models. Remarkably, the MVA-Spf vaccine candidate produced higher levels of antibodies, a stronger T cell response, and a higher degree of protection from challenge. In addition, the level of SARS-CoV-2 in the brain of MVA-Spf inoculated mice was decreased to undetectable levels. Those results add to our current experience and range of vaccine vectors and technologies for developing a safe and effective COVID-19 vaccine.

14.
Cell Chem Biol ; 30(5): 540-552.e6, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-36958337

RESUMO

While HIV-1-mediated CD4 downregulation protects infected cells from antibody-dependent cellular cytotoxicity (ADCC), shed gp120 binds to CD4 on uninfected bystander CD4+ T cells, sensitizing them to ADCC mediated by HIV+ plasma. Soluble gp120-CD4 interaction on multiple immune cells also triggers a cytokine burst. The small molecule temsavir acts as an HIV-1 attachment inhibitor by preventing envelope glycoprotein (Env)-CD4 interaction and alters the overall antigenicity of Env by affecting its processing and glycosylation. Here we show that temsavir also blocks the immunomodulatory activities of shed gp120. Temsavir prevents shed gp120 from interacting with uninfected bystander CD4+ cells, protecting them from ADCC responses and preventing a cytokine burst. Mechanistically, this depends on temsavir's capacity to prevent soluble gp120-CD4 interaction, to reduce gp120 shedding, and to alter gp120 antigenicity. This suggests that the clinical benefits provided by temsavir could extend beyond blocking viral entry.


Assuntos
HIV-1 , Linfócitos T CD4-Positivos/metabolismo , Regulação para Baixo , Proteína gp120 do Envelope de HIV , Citocinas/metabolismo
15.
Cell Rep Med ; 4(1): 100893, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36584683

RESUMO

COVID-19 convalescent plasmas (CCPs) are chosen for plasma therapy based on neutralizing titers and anti-Spike immunoglobulin levels. However, CCP characteristics that promote SARS-CoV-2 control are complex and incompletely defined. Using an in vivo imaging approach, we demonstrate that CCPs with low neutralizing (ID50 ≤ 1:250), but moderate to high Fc-effector activity, in contrast to those with poor Fc function, delay mortality and/or improve survival of SARS-CoV-2-challenged K18-hACE2 mice. The impact of innate immune cells on CCP efficacy depended on their residual neutralizing activity. Fractionation of a selected CCP revealed that IgG and Ig(M + A) were required during therapy, but the IgG fraction alone sufficed during prophylaxis. Finally, despite reduced neutralization, ancestral SARS-CoV-2-elicited CCPs significantly delayed Delta and Beta-induced mortality suggesting that Fc-effector functions contribute to immunity against VOCs. Thus, Fc activity of CCPs provide a second line of defense when neutralization is compromised and can serve as an important criterion for CCP selection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , COVID-19/terapia , Soroterapia para COVID-19 , Resultado do Tratamento , Imunoglobulina G
16.
iScience ; 26(1): 105783, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36514310

RESUMO

Neutralizing antibodies (NAbs) hold great promise for clinical interventions against SARS-CoV-2 variants of concern (VOCs). Understanding NAb epitope-dependent antiviral mechanisms is crucial for developing vaccines and therapeutics against VOCs. Here we characterized two potent NAbs, EH3 and EH8, isolated from an unvaccinated pediatric patient with exceptional plasma neutralization activity. EH3 and EH8 cross-neutralize the early VOCs and mediate strong Fc-dependent effector activity in vitro. Structural analyses of EH3 and EH8 in complex with the receptor-binding domain (RBD) revealed the molecular determinants of the epitope-driven protection and VOC evasion. While EH3 represents the prevalent IGHV3-53 NAb whose epitope substantially overlaps with the ACE2 binding site, EH8 recognizes a narrow epitope exposed in both RBD-up and RBD-down conformations. When tested in vivo, a single-dose prophylactic administration of EH3 fully protected stringent K18-hACE2 mice from lethal challenge with Delta VOC. Our study demonstrates that protective NAbs responses converge in pediatric and adult SARS-CoV-2 patients.

17.
Sci Adv ; 8(28): eabn4188, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857504

RESUMO

Soluble angiotensin-converting enzyme 2 (ACE2) constitutes an attractive antiviral capable of targeting a wide range of coronaviruses using ACE2 as their receptor. Using structure-guided approaches, we developed a series of bivalent ACE2-Fcs harboring functionally and structurally validated mutations that enhance severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain recognition by up to ~12-fold and remove angiotensin enzymatic activity. The lead variant M81 potently cross-neutralized SARS-CoV-2 variants of concern (VOCs), including Omicron, at subnanomolar half-maximal inhibitory concentration and was capable of robust Fc-effector functions, including antibody-dependent cellular cytotoxicity, phagocytosis, and complement deposition. When tested in a stringent K18-hACE2 mouse model, Fc-enhanced ACE2-Fc delayed death by 3 to 5 days or effectively resolved lethal SARS-CoV-2 infection in both prophylactic and therapeutic settings via the combined effects of neutralization and Fc-effector functions. These data add to the demonstrated utility of soluble ACE2 as a valuable SARS-CoV-2 antiviral and indicate that Fc-effector functions may constitute an important component of ACE2-Fc therapeutic activity.

18.
iScience ; 25(7): 104528, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35677392

RESUMO

SARS-CoV-2 infection of host cells starts by binding the Spike glycoprotein (S) to the ACE2 receptor. The S-ACE2 interaction is a potential target for therapies against COVID-19 as demonstrated by the development of immunotherapies blocking this interaction. VE607 - a commercially available compound composed of three stereoisomers - was described as an inhibitor of SARS-CoV-1. Here, we show that VE607 broadly inhibits pseudoviral particles bearing the Spike from major VOCs (D614G, Alpha, Beta, Gamma, Delta, Omicron - BA.1, and BA.2) as well as authentic SARS-CoV-2 at low micromolar concentrations. In silico docking, mutational analysis, and smFRET revealed that VE607 binds to the receptor binding domain (RBD)-ACE2 interface and stabilizes RBD in its "up" conformation. Prophylactic treatment with VE607 did not prevent SARS-CoV-2-induced mortality in K18-hACE2 mice, but it did reduce viral replication in the lungs by 37-fold. Thus, VE607 is an interesting lead for drug development for the treatment of SARS-CoV-2 infection.

19.
J Biol Chem ; 298(4): 101819, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35283191

RESUMO

The conformationally dynamic HIV-1 envelope trimer (Env) is the target of broadly neutralizing antibodies (bnAbs) that block viral entry. Single-molecule Förster resonance energy transfer (smFRET) has revealed that HIV-1 Env exists in at least three conformational states on the virion. Prior to complete host-receptor engagement (State 3), Env resides most prevalently in the smFRET-defined State 1, which is preferentially recognized by most bnAbs that are elicited by natural infection. smFRET has also revealed that soluble trimers containing prefusion-stabilizing disulfide and isoleucine-to-proline substitutions reside primarily in State 2, which is a required intermediate between States 1 and 3. While high-resolution Env structures have been determined for States 2 and 3, the structure of these trimers in State 1 is unknown. To provide insight into the State 1 structure, here we characterized antigenic differences between smFRET-defined states and then correlated these differences with known structural differences between States 2 and 3. We found that cell surface-expressed Env was enriched in each state using state-enriching antibody fragments or small-molecule virus entry inhibitors and then assessed binding to HIV-1 bnAbs preferentially binding different states. We observed small but consistent differences in binding between Env enriched in States 1 and 2, and a more than 10-fold difference in binding to Env enriched in these states versus Env enriched in State 3. We conclude that structural differences between HIV-1 Env States 1 and 3 are likely more than 10-fold greater than those between States 1 and 2, providing important insight into State 1.


Assuntos
Infecções por HIV , HIV-1 , Produtos do Gene env do Vírus da Imunodeficiência Humana , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/metabolismo , Anticorpos Anti-HIV , HIV-1/metabolismo , Humanos , Conformação Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
20.
bioRxiv ; 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35233570

RESUMO

SARS-CoV-2 infection of host cells starts by binding of the Spike glycoprotein (S) to the ACE2 receptor. The S-ACE2 interaction is a potential target for therapies against COVID-19 as demonstrated by the development of immunotherapies blocking this interaction. Here, we present the commercially available VE607, comprised of three stereoisomers, that was originally described as an inhibitor of SARS-CoV-1. We show that VE607 specifically inhibits infection of SARS-CoV-1 and SARS-CoV-2 S-expressing pseudoviral particles as well as authentic SARS-CoV-2. VE607 stabilizes the receptor binding domain (RBD) in its "up" conformation. In silico docking and mutational analysis map the VE607 binding site at the RBD-ACE2 interface. The IC 50 values are in the low micromolar range for pseudoparticles derived from SARS-CoV-2 Wuhan/D614G as well as from variants of concern (Alpha, Beta, Gamma, Delta and Omicron), suggesting that VE607 has potential for the development of drugs against SARS-CoV-2 infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...